Skip to main content

Glioma clinical trials at UCSD

28 in progress, 8 open to eligible people

Showing trials for
  • Evaluate Multiple Regimens in Newly Diagnosed and Recurrent Glioblastoma

    open to eligible people ages 18 years and up

    Glioblastoma (GBM) adaptive, global, innovative learning environment (GBM AGILE) is an international, seamless Phase II/III response adaptive randomization platform trial designed to evaluate multiple therapies in newly diagnosed (ND) and recurrent GBM.

    La Jolla, California and other locations

  • Immune Checkpoint Inhibitor Nivolumab in People With Recurrent Select Rare CNS Cancers

    open to eligible people ages 18-99

    Background: More than 130 primary tumors of the central nervous system (CNS) have been identified. Most affect less than 1,000 people in the United States each year. Because these tumors are so rare, there are few proven therapies. This study will test whether the immunotherapy drug nivolumab is an effective treatment for people with rare CNS tumors. Objectives: To learn if stimulating the immune system using the drug nivolumab can shrink tumors in people with rare CNS (brain or spine) tumors or increase the time it takes for these tumors to grow or spread. Eligibility: Adults whose rare CNS tumor has returned. Design: Participants will be screened: - Heart and blood tests - Physical and neurological exam - Hepatitis tests - Pregnancy test - MRI. They will lay in a machine that takes pictures. - Tumor tissue sample. This can be from a previous procedure. At the start of the study, participants will have blood tests. They will answer questions about their symptoms and their quality of life. Participants will get nivolumab in a vein every 2 weeks for up to 64 weeks. Participants will have monthly blood tests. Every other month they will have an MRI and a neurologic function test. They will also answer questions about their quality of life. Genetic tests will be done on participants' tumor tissue. Participants will be contacted if any clinically important results are found. After treatment ends, participants will be monitored for up to 5 years. They will have a series of MRIs and neurological function tests. They will be asked to report any symptoms they experience....

    La Jolla, California and other locations

  • ONC201 in H3 K27M-mutant Diffuse Glioma Following Radiotherapy (the ACTION Study)

    open to all eligible people

    This is a randomized, double-blind, placebo-controlled, parallel-group, international, Phase 3 study in patients with newly diagnosed H3 K27M-mutant diffuse glioma to assess whether treatment with ONC201 following frontline radiotherapy will extend overall survival and progression-free survival in this population. Eligible participants will have histologically diagnosed H3 K27M-mutant diffuse glioma and have completed standard frontline radiotherapy.

    La Jolla, California and other locations

  • Radiation Therapy With Concomitant and Adjuvant Temozolomide Versus Radiation Therapy With Adjuvant PCV Chemotherapy in Patients With Anaplastic Glioma or Low Grade Glioma

    open to eligible people ages 18 years and up

    Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. It is not yet known whether giving radiation with concomitant and adjuvant temozolomide versus radiation with adjuvant PCV is more effective in treating anaplastic glioma or low grade glioma.

    La Jolla, California and other locations

  • Optimal Dose of Candidate GBM Vaccine VBI-1901 in Recurrent GBM Subjects

    open to eligible people ages 18 years and up

    The purpose of this study is to assess the safety and tolerability of VBI-1901 in subjects with recurrent malignant gliomas (glioblastoma, or GBM).

    La Jolla, California and other locations

  • Trametinib and Everolimus for Treatment of Pediatric and Young Adult Patients With Recurrent Gliomas (PNOC021)

    open to eligible people ages 1-25

    This phase I trial studies the side effects and best dose of trametinib and everolimus in treating pediatric and young adult patients with gliomas that have come back (recurrent). Trametinib acts by targeting a protein in cells called MEK and disrupting tumor growth. Everolimus is a drug that may block another pathway in tumor cells that can help tumors grow. Giving trametinib and everolimus may work better to treat low and high grade gliomas compared to trametinib or everolimus alone.

    San Diego, California and other locations

  • Longitudinal Prospective Study of Neurocognition & Neuroimaging in Primary BT Patients

    open to eligible people ages 18-99

    In this proposal, the investigators introduce a novel, translational study to prospectively examine primary brain tumor patients undergoing fractionated radiation therapy to the brain. Quantitative neuroimaging, radiation dose information, and directed neurocognitive testing will be acquired through this study to improve understanding of cognitive changes associated with radiation dosage to non-targeted tissue, and will provide the basis for evidence-based cognitive- sparing brain radiotherapy.

    San Diego, California

  • Registry of Patients With Brain Tumors Treated With STaRT (GammaTiles)

    open to all eligible people

    The objectives of this registry study are to evaluate real-world clinical outcomes and patient reported outcomes that measure the effectiveness and safety of STaRT.

    La Jolla, California and other locations

  • / 2 Drug Resistant Immunotherapy With Activated, Gene Modified Allogeneic or Autologous γδ T Cells (DeltEx) in Combination With Maintenance Temozolomide in Subjects With Recurrent or Newly Diagnosed Glioblastoma

    Sorry, not currently recruiting here

    This multicenter, Phase 1b/2 study is being conducted to determine if the experimental cell therapy is safe, tolerable and can delay the return of cancer in patients with a newly diagnosed or recurrent glioblastoma multiforme (GBM) in combination with standard chemotherapy treatment temozolomide (TMZ). If there is a 25% or greater improvement in survival in this study then the therapy should be studied further.

    La Jolla, California and other locations

  • Berubicin in Adult Subjects With Recurrent Glioblastoma Multiforme

    Sorry, in progress, not accepting new patients

    This is an open-label, multicenter, randomized, parallel, 2-arm, efficacy and safety study. Patients with GBM after failure of standard first line therapy will be randomized in a 2:1 ratio to receive berubicin or lomustine for the evaluation of OS. Additional endpoints will include response and progression outcomes evaluated by a blinded central reviewer for each patient according to RANO criteria. A pre-planned, non-binding futility analysis will be performed after approximately 30 to 50% of all planned patients have completed the primary endpoint at 6 months. This review will include additional evaluation of safety as well as secondary efficacy endpoints. Enrollment will not be paused during this interim analysis.

    San Diego, California and other locations

  • Testing the Effect of Immunotherapy (Ipilimumab and Nivolumab) in Patients With Recurrent Glioma With Elevated Mutational Burden

    Sorry, currently not accepting new patients, but might later

    This phase II trial studies the effect of immunotherapy drugs (ipilimumab and nivolumab) in treating patients with glioma that has come back (recurrent) and carries a high number of mutations (mutational burden). Cancer is caused by changes (mutations) to genes that control the way cells function. Tumors with high number of mutations may respond well to immunotherapy. Immunotherapy with monoclonal antibodies such as ipilimumab and nivolumab may help the body's immune system attack the cancer and may interfere with the ability of tumor cells to grow and spread. Giving ipilimumab and nivolumab may lower the chance of recurrent glioblastoma with high number of mutations from growing or spreading compared to usual care (surgery or chemotherapy).

    La Jolla, California and other locations

  • Enzastaurin Plus Temozolomide During and Following Radiation Therapy in Patients With Newly Diagnosed Glioblastoma With or Without the Novel Genomic Biomarker, DGM1

    Sorry, in progress, not accepting new patients

    This study will be conducted as a randomized, double-blind, placebo-controlled, multi-center Phase 3 study. Approximately 300 subjects with newly diagnosed glioblastoma who meet all eligibility criteria will be enrolled.

    La Jolla, California and other locations

  • Cediranib Maleate and Olaparib Compared to Bevacizumab in Treating Patients With Recurrent Glioblastoma

    Sorry, in progress, not accepting new patients

    This randomized phase II trial studies how well cediranib maleate and olaparib work compared to bevacizumab in treating patients with glioblastoma that has come back (recurrent). Cediranib maleate and olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as bevacizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.

    La Jolla, California and other locations

  • Clinical Benefit of Using Molecular Profiling to Determine an Individualized Treatment Plan for Patients With High Grade Glioma

    Sorry, in progress, not accepting new patients

    This is a 2 strata pilot trial within the Pacific Pediatric Neuro-Oncology Consortium (PNOC). The study will use a new treatment approach based on each patient's tumor gene expression, whole-exome sequencing (WES), targeted panel profile (UCSF 500 gene panel), and RNA-Seq. The current study will test the efficacy of such an approach in children with High-grade gliomas HGG.

    San Diego, California and other locations

  • Combination Therapy for the Treatment of Diffuse Midline Gliomas

    Sorry, in progress, not accepting new patients

    This phase II trial determines if the combination of ONC201 with different drugs, panobinostat or paxalisib, is effective for treating patients with diffuse midline gliomas (DMGs). Despite years of research, little to no progress has been made to improve outcomes for patients with DMGs, and there are few treatment options. ONC201, panobinostat, and paxalisib are all enzyme inhibitors that may stop the growth of tumor cells by clocking some of the enzymes needed for cell growth. This phase II trial assesses different combinations of these drugs for the treatment of DMGs.

    San Diego, California and other locations

  • DAY101 In Gliomas and Other Tumors

    Sorry, in progress, not accepting new patients

    This research study is studying a drug Tovorafenib/DAY101 (formerly TAK-580, MLN2480) as a possible treatment a low-grade glioma that has not responded to other treatments. The name of the study drug involved in this study is: • Tovorafenib/DAY101 (formerly TAK-580, MLN2480)

    San Diego, California and other locations

  • Nivolumab and Ipilimumab in Treating Patients With Rare Tumors

    Sorry, in progress, not accepting new patients

    This phase II trial studies nivolumab and ipilimumab in treating patients with rare tumors. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial enrolls participants for the following cohorts based on condition: 1. Epithelial tumors of nasal cavity, sinuses, nasopharynx: A) Squamous cell carcinoma with variants of nasal cavity, sinuses, and nasopharynx and trachea (excluding laryngeal, nasopharyngeal cancer [NPC], and squamous cell carcinoma of the head and neck [SCCHN]) B) Adenocarcinoma and variants of nasal cavity, sinuses, and nasopharynx (closed to accrual 07/27/2018) 2. Epithelial tumors of major salivary glands (closed to accrual 03/20/2018) 3. Salivary gland type tumors of head and neck, lip, esophagus, stomach, trachea and lung, breast and other location (closed to accrual) 4. Undifferentiated carcinoma of gastrointestinal (GI) tract 5. Adenocarcinoma with variants of small intestine (closed to accrual 05/10/2018) 6. Squamous cell carcinoma with variants of GI tract (stomach small intestine, colon, rectum, pancreas) (closed to accrual 10/17/2018) 7. Fibromixoma and low grade mucinous adenocarcinoma (pseudomixoma peritonei) of the appendix and ovary (closed to accrual 03/20/2018) 8. Rare pancreatic tumors including acinar cell carcinoma, mucinous cystadenocarcinoma or serous cystadenocarcinoma. Pancreatic adenocarcinoma is not eligible (closed to accrual) 9. Intrahepatic cholangiocarcinoma (closed to accrual 03/20/2018) 10. Extrahepatic cholangiocarcinoma and bile duct tumors (closed to accrual 03/20/2018) 11. Sarcomatoid carcinoma of lung 12. Bronchoalveolar carcinoma lung. This condition is now also referred to as adenocarcinoma in situ, minimally invasive adenocarcinoma, lepidic predominant adenocarcinoma, or invasive mucinous adenocarcinoma 13. Non-epithelial tumors of the ovary: A) Germ cell tumor of ovary B) Mullerian mixed tumor and adenosarcoma (closed to accrual 03/30/2018) 14. Trophoblastic tumor: A) Choriocarcinoma (closed to accrual) 15. Transitional cell carcinoma other than that of the renal, pelvis, ureter, or bladder (closed to accrual) 16. Cell tumor of the testes and extragonadal germ tumors: A) Seminoma and testicular sex cord cancer B) Non seminomatous tumor C) Teratoma with malignant transformation (closed to accrual) 17. Epithelial tumors of penis - squamous adenocarcinoma cell carcinoma with variants of penis (closed to accrual) 18. Squamous cell carcinoma variants of the genitourinary (GU) system 19. Spindle cell carcinoma of kidney, pelvis, ureter 20. Adenocarcinoma with variants of GU system (excluding prostate cancer) (closed to accrual 07/27/2018) 21. Odontogenic malignant tumors 22. Pancreatic neuroendocrine tumor (PNET) (formerly named: Endocrine carcinoma of pancreas and digestive tract.) (closed to accrual) 23. Neuroendocrine carcinoma including carcinoid of the lung (closed to accrual 12/19/2017) 24. Pheochromocytoma, malignant (closed to accrual) 25. Paraganglioma (closed to accrual 11/29/2018) 26. Carcinomas of pituitary gland, thyroid gland parathyroid gland and adrenal cortex (closed to accrual) 27. Desmoid tumors 28. Peripheral nerve sheath tumors and NF1-related tumors (closed to accrual 09/19/2018) 29. Malignant giant cell tumors 30. Chordoma (closed to accrual 11/29/2018) 31. Adrenal cortical tumors (closed to accrual 06/27/2018) 32. Tumor of unknown primary (Cancer of Unknown Primary; CuP) (closed to accrual 12/22/2017) 33. Not Otherwise Categorized (NOC) Rare Tumors [To obtain permission to enroll in the NOC cohort, contact: S1609SC@swog.org] (closed to accrual 03/15/2019) 34. Adenoid cystic carcinoma (closed to accrual 02/06/2018) 35. Vulvar cancer (closed to accrual) 36. MetaPLASTIC carcinoma (of the breast) (closed to accrual) 37. Gastrointestinal stromal tumor (GIST) (closed to accrual 09/26/2018) 38. Perivascular epithelioid cell tumor (PEComa) 39. Apocrine tumors/extramammary Paget's disease (closed to accrual) 40. Peritoneal mesothelioma 41. Basal cell carcinoma (temporarily closed to accrual 04/29/2020) 42. Clear cell cervical cancer 43. Esthenioneuroblastoma (closed to accrual) 44. Endometrial carcinosarcoma (malignant mixed Mullerian tumors) (closed to accrual) 45. Clear cell endometrial cancer 46. Clear cell ovarian cancer (closed to accrual) 47. Gestational trophoblastic disease (GTD) 48. Gallbladder cancer 49. Small cell carcinoma of the ovary, hypercalcemic type 50. PD-L1 amplified tumors 51. Angiosarcoma 52. High-grade neuroendocrine carcinoma (pancreatic neuroendocrine tumor [PNET] should be enrolled in Cohort 22; prostatic neuroendocrine carcinomas should be enrolled into Cohort 53). Small cell lung cancer is not eligible (closed to accrual) 53. Treatment-emergent small-cell neuroendocrine prostate cancer (t-SCNC)

    La Jolla, California and other locations

  • ICT-107 in Glioblastoma

    Sorry, currently not accepting new patients, but might later

    ICT-107 consists of dendritic cells, prepared from autologous mononuclear cells that are pulsed with six synthetic peptides that were derived from tumor associated antigens (TAA) present on glioblastoma tumor cells. This is a Phase 3 study to evaluate ICT-107 in patients with newly diagnosed glioblastoma. Subjects will be randomized to receive standard of care chemoradiation (temozolomide (TMZ) with either ICT-107 or a blinded control. Reinfusion with the pulsed dendritic cells should stimulate cytotoxic T cells to specifically target glioblastoma tumour cells.

    La Jolla, California and other locations

  • Pivotal, Randomized, Open-label Study of Optune® (Tumor Treating Fields) Concomitant With RT & TMZ for the Treatment of Newly Diagnosed GBM

    Sorry, in progress, not accepting new patients

    To test the effectiveness and safety of Optune® given concomitantly with radiation therapy (RT) and temozolomide (TMZ) in newly diagnosed GBM patients, compared to radiation therapy and temozolomide alone. In both arms, Optune® and maintenance temozolomide are continued following radiation therapy.

    La Jolla, California and other locations

  • PNOC 001: Phase II Study of Everolimus for Recurrent or Progressive Low-grade Gliomas in Children

    Sorry, in progress, not accepting new patients

    This is an open label study of everolimus in children with recurrent or progressive low-grade glioma.

    San Diego, California and other locations

  • Radiation Therapy With or Without Temozolomide in Treating Patients With Low-Grade Glioma

    Sorry, in progress, not accepting new patients

    RATIONALE: Radiation therapy uses high-energy x-rays to kill tumor cells. Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. It is not yet known whether radiation therapy is more effective when given together with or without temozolomide in treating patients with low-grade glioma. PURPOSE: This randomized phase III trial is studying radiation therapy so see how well it works when given together with or without temozolomide in treating patients with low-grade glioma.

    La Jolla, California and other locations

  • Drug [DCVax®-L] to Treat Newly Diagnosed GBM Brain Cancer

    Sorry, in progress, not accepting new patients

    The primary purpose of the study is to determine the efficacy of an investigational therapy called DCVax(R)-L in patients with newly diagnosed GBM for whom surgery is indicated. Patients must enter screening at a participating site prior to surgical resection of the tumor. Patients will receive the standard of care, including radiation and Temodar therapy and two out of three will additionally receive DCVax-L, with the remaining one third receiving a placebo. All patients will have the option to receive DCVax-L in a crossover arm upon documented disease progression. (note: DCVax-L when used for patients with brain cancer is sometimes also referred to as DCVax-Brain)

    La Jolla, California and other locations

  • Vorasidenib (AG-881) in Participants With Residual or Recurrent Grade 2 Glioma With an IDH1 or IDH2 Mutation (INDIGO)

    Sorry, in progress, not accepting new patients

    Study AG881-C-004 is a phase 3, multicenter, randomized, double-blind, placebo-controlled study comparing the efficacy of vorasidenib to placebo in participants with residual or recurrent Grade 2 glioma with an IDH1 or IDH2 mutation who have undergone surgery as their only treatment. Participants will be required to have central confirmation of IDH mutation status prior to randomization. Approximately 340 participants are planned to be randomized 1:1 to receive orally administered vorasidenib 40 mg QD or placebo.

    La Jolla, California and other locations

  • Targeted Therapy Directed by Genetic Testing in Treating Patients With Advanced Refractory Solid Tumors, Lymphomas, or Multiple Myeloma (The MATCH Screening Trial)

    Sorry, in progress, not accepting new patients

    This phase II MATCH trial studies how well treatment that is directed by genetic testing works in patients with solid tumors or lymphomas that have progressed following at least one line of standard treatment or for which no agreed upon treatment approach exists. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic abnormalities (such as mutations, amplifications, or translocations) may benefit more from treatment which targets their tumor's particular genetic abnormality. Identifying these genetic abnormalities first may help doctors plan better treatment for patients with solid tumors, lymphomas, or multiple myeloma.

    La Jolla, California and other locations

  • Telaglenastat With Radiation Therapy and Temozolomide in Treating Patients With IDH-Mutated Diffuse Astrocytoma or Anaplastic Astrocytoma

    Sorry, in progress, not accepting new patients

    This phase 1b trial studies the side effects and best dose of telaglenastat in combination with radiation therapy and temozolomide in treating patients with IDH-mutated diffuse or anaplastic astrocytoma. Telaglenastat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Chemotherapy drugs, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving telaglenastat with radiation therapy and temozolomide may work better than surgery, radiation therapy, and temozolomide in treating patients with IDH-mutated diffuse astrocytoma or anaplastic astrocytoma.

    La Jolla, California and other locations

  • Temozolomide With or Without Veliparib in Treating Patients With Newly Diagnosed Glioblastoma Multiforme

    Sorry, in progress, not accepting new patients

    This randomized phase II/III trial studies how well temozolomide and veliparib work compared to temozolomide alone in treating patients with newly diagnosed glioblastoma multiforme. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known whether temozolomide is more effective with or without veliparib in treating glioblastoma multiforme.

    La Jolla, California and other locations

  • Anti-cancer Drug, Selinexor, to the Usual Chemotherapy Treatment (Temozolomide) for Brain Tumors That Have Returned After Previous Treatment

    Sorry, currently not accepting new patients, but might later

    This phase I/II trial tests the safety, side effects and best dose of selinexor given in combination with the usual chemotherapy (temozolomide) and compares the effect of this combination therapy vs. the usual chemotherapy alone (temozolomide) in treating patients with glioblastoma that has come back (recurrent). Selinexor is in a class of medications called selective inhibitors of nuclear export (SINE). It works by blocking a protein called CRM1, which may keep cancer cells from growing and may kill them. Temozolomide is in a class of medications called alkylating agents. It works by damaging the cell's DNA and may kill tumor cells and slow down or stop tumor growth. Giving selinexor in combination with usual chemotherapy (temozolomide) may shrink or stabilize the tumor better than the usual chemotherapy with temozolomide alone in patients with recurrent glioblastoma.

    La Jolla, California and other locations

  • Testing the Use of the Immunotherapy Drugs Ipilimumab and Nivolumab Plus Radiation Therapy Compared to the Usual Treatment (Temozolomide and Radiation Therapy) for Newly Diagnosed MGMT Unmethylated Glioblastoma

    Sorry, in progress, not accepting new patients

    This phase II/III trial compares the usual treatment with radiation therapy and temozolomide to radiation therapy in combination with immunotherapy with ipilimumab and nivolumab in treating patients with newly diagnosed MGMT unmethylated glioblastoma. Radiation therapy uses high energy photons to kill tumor and shrink tumors. Chemotherapy drugs, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Temozolomide, may not work as well for the treatment of tumors that have the unmethylated MGMT. Immunotherapy with monoclonal antibodies called immune checkpoint inhibitors, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is possible that immune checkpoint inhibitors may work better at time of first diagnosis as opposed to when tumor comes back. Giving radiation therapy with ipilimumab and nivolumab may lengthen the time without brain tumor returning or growing and may extend patients' life compared to usual treatment with radiation therapy and temozolomide.

    La Jolla, California and other locations

Our lead scientists for Glioma research studies include .

Last updated: