Skip to main content

Brain Injuries clinical trials at UCSD

10 in progress, 5 open to eligible people

Showing trials for
  • Hyperbaric Oxygen Brain Injury Treatment Trial

    open to eligible people ages 16-65

    The purpose of this innovative adaptive phase II trial design is to determine the optimal combination of hyperbaric oxygen treatment parameters that is most likely to demonstrate improvement in the outcome of severe TBI patients in a subsequent phase III trial.

    San Diego, California and other locations

  • Managing MTBI-related Headaches With rTMS

    open to eligible people ages 18-60

    Persistent headache is one of the most common debilitating symptoms in military personnel suffering from mild traumatic brain injury (MTBI). This study aims to assess the long-term effect of repetitive transcranial magnetic stimulation (rTMS) in managing MTBI related headaches for up to 2-3 months by comparing the treatment effect of active-rTMS to sham-rTMS.

    San Diego, California

  • Personalized, Augmented Cognitive Training (PACT) for Service Members and Veterans With a History of TBI

    open to eligible people ages 18-55

    Mild traumatic brain injury (TBI) is a common medical condition that occurs when a head injury causes someone to lose consciousness, feel dazed or confused, or be unable to remember events occurring immediately after the injury. While most individuals with mild TBI recover within weeks or months, some individuals with mild TBI report chronic symptoms such as difficulty with cognitive skills like attention, learning, or memory, along with other symptoms such as irritability or headache. Previous studies, including those conducted by our scientific team, have shown that cognitive rehabilitation can help patients with persistent symptoms after mild TBI return to full duty, work, school, and other important life activities. Specifically, cognitive rehabilitation can provide lasting improvements in thinking abilities, functional capacity, post-concussive symptoms, and quality of life after mild TBI. However, effective interventions are still out of reach for many service members and Veterans with TBI. For patients who have returned to duty, employment, or education, scheduling up to 60 hours of treatment (a typical treatment schedule in many settings) may not be feasible. Additionally, some patients may live in areas where it is burdensome to make numerous visits to a medical center. Personalized Augmented Cognitive Training (PACT) compresses treatment into six hours of once-weekly personalized, one-on-one training by selecting treatment modules based on patient needs and priorities-substantially reducing the total amount of time required to complete treatment. PACT can be offered either in-person (in clinic) or via home-based video telemedicine, depending upon patients' preferences. Additionally, PACT includes training and encouragement for service members and Veterans to make self-directed use of mobile apps that train cognitive skills and strategies.The primary goal of this study is to evaluate whether PACT is effective at improving cognition, symptoms, and functional outcomes among military service members and Veterans with a history of mild TBI. The study will also yield information about factors that can enhance or interfere with treatment, such as number of previous TBIs, presence of post-traumatic stress; and choice of in-person vs. video telemedicine delivery of care.

    San Diego, California and other locations

  • The Biomarkers in the Hyperbaric Oxygen Brain Injury Treatment Trial (BioHOBIT)

    open to eligible people ages 16-65

    There are no therapeutic agents that have been shown to improve outcomes from severe traumatic brain injury (TBI). Critical barriers to progress in developing treatments for severe TBI are the lack of: 1) monitoring biomarkers for assessing individual patient response to treatment; 2) predictive biomarkers for identifying patients likely to benefit from a promising intervention. Currently, clinical examination remains the fundamental tool for monitoring severe TBI patients and for subject selection in clinical trials. However, these patients are typically intubated and sedated, limiting the utility of clinical examinations. Validated monitoring and predictive biomarkers will allow titration of the dose of promising therapeutics to individual subject response, as well as make clinical trials more efficient by enabling the enrollment of subjects likely to benefit. Glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL) and high sensitivity c-reactive protein (hsCRP) are promising biomarkers that may be useful as 1) monitoring biomarkers; 2) predictive biomarkers in severe TBI trials. Although the biological rationale supporting their use is strong, significant knowledge gaps remain. To address these gaps in knowledge, we propose an ancillary observational study leveraging an ongoing severe TBI clinical trial that is not funded to collect biospecimen. The Hyperbaric Oxygen in Brain Injury Treatment (HOBIT) trial, a phase II randomized control clinical trial that seeks to determine the dose of hyperbaric oxygen therapy (HBOT) that that has the highest likelihood of demonstrating efficacy in a phase III trial. The proposed study will: 1) validate the accuracy of candidate monitoring biomarkers for predicting clinical outcome; 2) determine the treatment effect of different doses of HBOT on candidate monitoring biomarkers; and 3) determine whether there is a biomarker defined subset of severe TBI that responds favorably to HBOT. This proposal will: 1) inform a go/no-go decision for a phase III trial of HBOT by providing adjunctive evidence of the effect of HBOT on key biological pathways through which HBOT is hypothesized to affect outcome; 2) provide evidence to support further study of the first monitoring biomarkers of severe TBI; 3) increase the likelihood of success of a phase III trial by identifying the sub-population of severe TBI likely to benefit from HBOT; 4) create a repository of TBI biospecimen which may be accessed by other investigators. This study is related to NCT04565119

    San Diego, California and other locations

  • Transcranial Electrical Stimulation for mTBI

    open to eligible people ages 18-60

    Mild traumatic brain injury (mTBI) is a leading cause of sustained physical, cognitive, emotional, and behavioral deficits in OEF/OIF/OND Veterans and the general public. However, the underlying pathophysiology is not completely understood, and there are few effective treatments for post-concussive symptoms (PCS). In addition, there are substantial overlaps between PCS and post-traumatic stress disorder (PTSD) symptoms in mTBI. IASIS is among a class of passive neurofeedback treatments that combine low-intensity pulses for transcranial electrical stimulation (LIP-tES) with electroencephalography (EEG) monitoring. Nexalin is another tES technique , with FDA approvals for treating insomnia, depression, and anxiety. LIP-tES techniques have shown promising results in alleviating PCS individuals with TBI. However, the neural mechanisms underlying the effects of LIP-tES treatment in TBI are unknown, owing to the dearth of neuroimaging investigations of this therapeutic intervention. Conventional neuroimaging techniques such as MRI and CT have limited sensitivity in detecting physiological abnormalities caused by mTBI, or in assessing the efficacy of mTBI treatments. In acute and chronic phases, CT and MRI are typically negative even in mTBI patients with persistent PCS. In contrast, evidence is mounting in support of resting-state magnetoencephalography (rs-MEG) slow-wave source imaging (delta-band, 1-4 Hz) as a marker for neuronal abnormalities in mTBI. The primary goal of the present application is to use rs-MEG to identify the neural underpinnings of behavioral changes associated with IASIS treatment in Veterans with mTBI. Using a double-blind placebo controlled design, the investigators will study changes in abnormal MEG slow-waves before and after IASIS treatment (relative to a 'sham' treatment group) in Veterans with mTBI. For a subset of participants who may have remaining TBI symptoms at the end of all IASIS treatment sessions, MEG slow-wave changes will be recorded before and after additional Nexalin treatment. In addition, the investigators will examine treatment-related changes in PCS, PTSD symptoms, neuropsychological test performances, and their association with changes in MEG slow-waves. The investigators for the first time will address a fundamental question about the mechanism of slow-waves in brain injury, namely whether slow-wave generation in wakefulness is merely a negative consequence of neuronal injury or if it is a signature of ongoing neuronal rearrangement and healing that occurs at the site of the injury. Specific Aim 1 will detect the loci of injury in Veterans with mTBI and assess the mechanisms underlying functional neuroimaging changes related to IASIS treatment, and for a subset of Veterans with remaining symptoms, additional Nexalin treatment, using rs-MEG slow-wave source imaging. The investigators hypothesize that MEG slow-wave source imaging will show significantly higher sensitivity than conventional MRI in identifying the loci of injury on a single-subject basis. The investigators also hypothesize that in wakefulness, slow-wave generation is a signature of ongoing neural rearrangement / healing, rather than a negative consequence of neuronal injury. Furthermore, the investigators hypothesize IASIS will ultimately reduce abnormal MEG slow-wave generation in mTBI by the end of the treatment course, owing to the accomplishment of neural rearrangement / healing. Specific Aim 2 will examine treatment-related changes in PCS and PTSD symptoms in Veterans with mTBI. The investigators hypothesize that compared with the sham group, mTBI Veterans in the IASIS treatment group will show significantly greater decreases in PCS and PTSD symptoms between baseline and post-treatment assessments. Specific Aim 3 will study the relationship among IASIS treatment-related changes in rs-MEG slow-wave imaging, PCS, and neuropsychological measures in Veterans with mTBI. The investigators hypothesize that Reduced MEG slow-wave generation will correlate with reduced total PCS score, individual PCS scores (e.g., sleep disturbance, post-traumatic headache, photophobia, and memory problem symptoms), and improved neuropsychological exam scores between post-IASIS and baseline exams. The success of the proposed research will for the first time confirm that facilitation of slow-wave generation in wakefulness leads to significant therapeutic benefits in mTBI, including an ultimate reduction of abnormal slow-waves accompanied by an improvement in PCS and cognitive functioning.

    San Diego, California

  • Advancing Understanding of Transportation Options

    Sorry, in progress, not accepting new patients

    This Stage II randomized, controlled, longitudinal trial seeks to assess the acceptability, feasibility, and effects of a driving decision aid use among geriatric patients and providers. This multi-site trial will (1) test the driving decision aid (DDA) in improving decision making and quality (knowledge, decision conflict, values concordance and behavior intent); and (2) determine its effects on specific subpopulations of older drivers (stratified for cognitive function, decisional capacity, and attitudinally readiness for a mobility transition). The overarching hypotheses are that the DDA will help older adults make high-quality decisions, which will mitigate the negative psychosocial impacts of driving reduction, and that optimal DDA use will target certain populations and settings.

    La Jolla, California and other locations

  • CBT-I for Veterans With TBI

    Sorry, in progress, not accepting new patients

    Many Operation Enduring Freedom/Operation Iraqi Freedom/Operation New Dawn era Veterans have suffered a mild traumatic brain injury (mTBI), and now cope with multiple post-injury symptoms, including sleep disturbances (especially insomnia). Chronic insomnia in mTBI patients has the potential to exacerbate other symptoms, delay recovery, and negatively affect many of the cognitive, psychological, and neuromuscular sequelae of mTBI, thereby decreasing quality of life. Although Cognitive-Behavioral Therapy for Insomnia (CBT-I) has been shown to be an effective evidence-based treatment for insomnia, there are no published randomized controlled trials evaluating the potential strengths and/or limitations of CBT-I in post-mTBI patients. Therefore, assessing CBT-I in the context of mTBI holds promise to provide substantial benefits in terms of improved rehabilitation outcomes in Veterans who have suffered mTBI.

    San Diego, California

  • Comparison of Two Group Wellness Interventions for Individuals With Neurologic Conditions and Their Support Persons

    Sorry, not yet accepting patients

    Approximately 5.3 million people live with a long-term disability resulting from a traumatic brain injury (TBI) and between 5-8% of those older than 60 suffer from Alzheimer's disease or other forms of dementia (ADRD). Consequences of these conditions can result in dramatic and persistent changes in functioning, impacting not only the patients, but also loved ones who become informal support persons. Many existing services help the family in the moment, but do not address long-term wellness. Thus, the purpose of this research study is to compare the effect of two different types of group wellness treatments for individuals with chronic mild TBI, moderate to severe TBI, and ADRD and their support persons.

  • MRI Markers of Outcome After Severe Pediatric TBI

    Sorry, currently not accepting new patients, but might later

    Traumatic brain injury (TBI) is the leading cause of death or disability in children. Each year in the United States, pediatric TBI results in an estimated 630,000 emergency room visits, 58,900 hospitalizations, and 7000 deaths. The incidence of long-term disability after severe TBI is high, with over 60% of children requiring educational or community based supportive services 12 months post-injury. Over 5,000 children require inpatient rehabilitation after TBI each year and an estimated 145,000 US children are currently living with disabilities after a severe TBI. Hospital costs for the acute treatment of children with TBI are estimated at ~$2.6 billion each year, while the gross annual costs accounting for long-term care and lost productivity approach $60 billion. Therefore, pediatric TBI is a major public health concern and new ways to diagnose and treat TBI are urgently needed.

    San Diego, California and other locations

  • Retraining Neural Pathways Improves Cognitive Skills After A Mild Traumatic Brain Injury

    Sorry, not yet accepting patients

    The proposed study tests the feasibility (Phase I) and efficacy (Phase II) of PATH neurotraining to improve working memory and attention in mTBI patients rapidly and effectively to provide clinical testing of a therapeutic training for the remediation of cognitive disorders caused by a concussion. This study will contribute to the fundamental knowledge of how to remediate concussions from a mTBI to enhance the health, lengthen the life and reduce the disabilities that result from a mTBI.

    San Diego, California and other locations

Last updated: