Low Birth Weight clinical trials at UCSD
2 in progress, 1 open to eligible people
Flow and Grow - The Ideal Time to Wean CPAP Off In Extremely Low Birth Weight Infants
open to all eligible people
Preterm neonates born at less than 30 weeks' gestation are commonly maintained on invasive or non-invasive respiratory support to facilitate gas exchange. While non-invasive respiratory support (NIS) can be gradually reduced over time as the infant grows, most weaning strategies often lead to weaning failure. This failure is evidenced by an increase in significant events such as apneas, desaturations, and/or bradycardias, increased work of breathing, or an inability to oxygenate or ventilate, resulting in escalated respiratory support. Although the optimal approach to weaning NIS remains uncertain, neonatal units that delay Continuous Positive Airway Pressure (CPAP) weaning until 32-34 weeks corrected gestational age exhibit lower rates of chronic lung disease. Therefore, the investigators aim to compare the duration on respiratory support and oxygen exposure in infants born at less than 30 weeks' gestational age who undergo a structured weaning protocol that includes remaining on CPAP until at least 32-34 weeks corrected gestational age (CGA). The hypothesis posits that preterm infants following a structured weaning protocol, including maintaining CPAP until a specific gestational age, will demonstrate lower rates of weaning failure off CPAP (defined as requiring more support and/or experiencing increased stimulation events 72 hours after CPAP weaning) than those managed according to the medical team's discretion.
La Jolla, California and other locations
Optimizing Nutrition and Milk (Opti-NuM) Project
Sorry, not currently recruiting here
Early nutrition critically influences growth, neurodevelopment and morbidity among infants born of very low birth weight (VLBW), but current one-size-fits-all feeding regimes do not optimally support these vulnerable infants. There is increasing interest in "precision nutrition" approaches, but it is unclear which Human Milk (HM) components require personalized adjustment of doses. Previous efforts have focused on macronutrients, but HM also contains essential micronutrients as well as non-nutrient bioactive components that shape the gut microbiome. Further, it is unclear if or how parental factors (e.g. body mass index, diet) and infant factors (e.g. genetics, gut microbiota, sex, acuity) influence relationships between early nutrition and growth, neurodevelopment and morbidity. Understanding these complex relationships is paramount to developing effective personalized HM feeding strategies for VLBW infants. This is the overarching goal of the proposed Optimizing Nutrition and Milk (Opti-NuM) Project. The Opti-NuM Project brings together two established research platforms with complementary expertise and resources: 1) the MaxiMoM Program* with its clinically embedded translational neonatal feeding trial network in Toronto (Dr. Deborah O'Connor, Dr. Sharon Unger) and 2) the International Milk Composition (IMiC) Consortium, a world-renowned multidisciplinary network of HM researchers and data scientists collaborating to understand how the myriad of HM components contribute "as a whole" to infant growth and development, using systems biology and machine learning approaches. Members of the IMiC Corsortium that will work with on this study are located at the University of Manitoba (Dr. Meghan Azad), University of California (Dr. Lars Bode) and Stanford (Dr. Nima Aghaeepour).
San Diego, California and other locations
Our lead scientists for Low Birth Weight research studies include Sandra Leibel, MD.
Last updated: