Skip to main content

Postoperative Pain clinical trials at UCSD

7 in progress, 3 open to eligible people

Showing trials for
  • Continuous Erector Spinae Plane Blocks to Treat Pain Following Percutaneous Nephrolithotomy

    open to eligible people ages 18 years and up

    This is a randomized, triple-masked, placebo-controlled parallel-arm human subjects clinical trial investigating the addition of a continuous erector spinae plane nerve block to a single-injection erector spinae plane block to provide postoperative analgesia following percutaneous nephrolithotomy. Participants will all receive a single-injection nerve block and perineural catheter insertion. Following surgery, participants will be randomly allocated to receive either perineural local anesthetic or normal saline until the second day following surgery.

    San Diego, California and other locations

  • Erector Spinae Plane Block Catheters and Intrathecal Morphine for Hepatic Resection

    open to eligible people ages 18 years and up

    To determine whether the addition of erector spinae plane (ESP) catheters to existing multimodal analgesic regimen with intrathecal morphine provides superior postoperative analgesia in patients undergoing hepatic resection compared with patients not receiving ESP catheters.

    San Diego, California

  • Treatment of Post-Operative Pain Following Orthopedic Surgery With SPRINT® Peripheral Nerve Stimulation (PNS) System

    open to eligible people ages 21 years and up

    The purpose of this study is to gather information about how knee pain changes when small amounts of electricity are delivered to the nerves in the leg. This study will involve the use of a Peripheral Nerve Stimulation (PNS) System that is made by SPR Therapeutics (the sponsor of the study). The SPRINT PNS System was cleared by the FDA for up to 60 days of use in the back and/or extremities for the management of acute and chronic pain.

    San Diego, California and other locations

  • Effectiveness of iPACK on Postoperative Pain From Hamstring Autograft Following ACL Repair

    Sorry, not yet accepting patients

    Patients undergoing ACL repair with hamstring autograft frequently develop significant post operative pain at the hamstring grafting site. This pain is within the distribution of a commonly used regional nerve block, the Interspace between the popliteal artery and capsule of the knee (iPACK). The investigators plan to randomize consenting patients to either receiving a SHAM injection of normal saline or to an interventional group of long acting local anesthetic (Ropivacaine) injected in the popliteal fossa between the popliteal artery and capsule of the knee (iPACK). Both groups of patients will receive standard of care with respect to perioperative pain management, which includes a preoperative adductor canal nerve block and preoperative acetaminophen administration. Dual primary endpoints of postoperative pain scores and mean postoperative opioid use will be retrieved and compared between groups. Additional secondary endpoints will be PACU length of stay, PACU opioid use, POD1 opioids use, and POD1 pain scores (best, worst, average).

  • Patient-Titrated Automated Intermittent Boluses of Local Anesthetic vs. a Continuous Infusion Via a Perineural Catheter for Postoperative Analgesia

    Sorry, accepting new patients by invitation only

    This will be a randomized comparison of continuous local anesthetic infusion with patient controlled boluses (PCA) to patient-titratable automated boluses with patient controlled boluses (PCA) for both infraclavicular and popliteal-sciatic perineural catheters. The overall goal is to determine the relationship between method of local anesthetic administration (continuous with PCA vs. titratable intermittent dosing with PCA) for these two perineural catheter locations and the resulting pain control. The investigators hypothesize that, compared with a traditional fixed, continuous basal infusion initiated prior to discharge, perineural local anesthetic administered with titratable automated boluses at a lower dose and a 5-hour delay following discharge will (1) provide at least noninferior analgesia during the period that both techniques are functioning; and, (2) will result in a longer overall duration of administration [dual primary end points].

    San Diego, California

  • Pulsed Electromagnetic Fields for Postoperative Analgesia: A Randomized, Triple-Masked, Sham-Controlled Pilot Study

    Sorry, not yet accepting patients

    Pulsed electromagnetic field therapy is a possible method of pain control involving the application of electromagnetic energy (also termed nonthermal, pulsed, shortwave radiofrequency therapy). Food and Drug Administration-cleared devices have been in clinical use for over 70 years. For decades, available devices consisted of a large signal generator and bulky coil applicator that were not portable and produced significant electromagnetic interference, making them impractical for common use. However, small, lightweight, relatively inexpensive, noninvasive, Food and Drug Administration-cleared devices that function for 30 days are now available to treat acute and chronic pain, decrease inflammation and edema, and hasten wound healing and bone regeneration. Therefore, it has the potential to concurrently improve analgesia and decrease or even negate opioid requirements, only without the limitations of opioids and peripheral nerve blocks. The purpose of this pilot study is to explore the possibility of treating acute postoperative pain with nonthermal, pulsed shortwave (radiofrequency) therapy, optimize the study protocol, and estimate the treatment effect in preparation for developing subsequent definitive clinical trials.

    San Diego, California

  • Ultrasound-Guided Percutaneous Peripheral Nerve Stimulation: A Department of Defense Funded Pragmatic Clinical Trial

    Sorry, accepting new patients by invitation only

    Postoperative pain is usually treated with opioids that have undesirable and sometimes dangerous side effects (e.g., vomiting and respiratory depression)-and yet over 80% of patients still experience inadequate pain relief. A novel, non-pharmacologic analgesic technique-percutaneous peripheral nerve stimulation (PNS)- holds extraordinary potential to greatly reduce or obviate opioid requirements and concurrently improve analgesia following painful surgery. This technique involves inserting an insulated electric lead adjacent to a target nerve through a needle prior to surgery using ultrasound guidance. Following surgery, a tiny electric current is delivered to the nerve resulting in potent pain control without any cognitive or adverse systemic side effects whatsoever. The electrical pulse generator (stimulator) is so small it is simply affixed to the patient's skin. The leads are already cleared by the US Food and Drug Administration to treat acute (postoperative) pain for up to 60 days; and, since percutaneous PNS may be provided on an outpatient basis, the technique holds the promise of providing potent analgesia outlasting the pain of surgery-in other words, the possibility of a painless, opioid-free recovery following surgery. The current project is a multicenter, randomized, quadruple-masked, placebo/sham-controlled, parallel-arm pragmatic clinical trial to determine the effects of percutaneous PNS on postoperative analgesia and opioid requirements, as well as physical and emotional functioning, the development of chronic pain, and ongoing quality of life.

    San Diego, California and other locations

Our lead scientists for Postoperative Pain research studies include .

Last updated: